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Simmiary

:

We derive the asjnnptotic expansions of the distributions of test statistics
for overidentifying restrictions for a linear structural equation. We analyze
two test statistics: one is associated with the limited information maximum like-
lihood estimator, and the other is associated with the fixed k-class estimator.
We also apply two kinds of asymptotic expansions: one is the large sample
asymptotics, and the other is the small-disturbance asymptotics. Therefore we
obtain four resulting expansions of the distributions.
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1. Introduction

Anderson and Rubin (19A9) proposed the likelihood-ratio statistic

for testing the overidentifiabillty conditions on a structural equation

in a system of simultaneous equations. The likelihood-ratio statistic

is found to be equivalent to the smallest root of the determinantal

equation in the theory of the Limited Information Maximum Likelihood

(LIML) estimator. Anderson and Rubin (1950) found that TX. „_ (see 2.8)
LlfiL

2
is asymptotically distributed as x with L degree of freedom. Here L

is the degree of overldentlflcatlon of a structural equation, and T is

the sample size.

Basmann (1960) proposed that ((T - K)/L)X___ be compared to a
LJ-ML

Fisher's variance ratio distribution with L and T - K degrees of freedom

(K is the number of exogeneous variables in the system.) Additionally

he proposed an alternative test statistic (A here) based on the Two-

Stage Least-Squares (TSLS) estimator of structural parameters. In other

words, the numerator of (X + 1) is the residual sum of squares of a

structural equation associated with the TSLS estimation. The test of

significance for X c la the same as that for X . His proposals were

supported by a Monte Carlo experiment on a set of parameters and exogen-

ous variables.

Later, Basmann (1966) derived the exact distribution of X _ „ for a

specific case. Richardson (1968) derived the exact distribution of X

for the case of two endogenous variables. He proved that the exact moments

of X approach to those of the F distribution as the noncentrality

parameter (concentration parameter) goes to infinity. McDonald (1972)

derived the exact distribution of X_ __ for the case of two endogenous
LirlL
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variables. He proved that Richardson's results on the expansion of exact

moments also hold for ^jtml* ^"^^^^ (1978) derived the exact distribution

of ^Tjj-, using zonal polynomials. The structural equation in his study

includes many endogenous variables.

Kadane (1970) demonstrated that the F distribution conjectured by

Basmann is the first order term of asymptotic expansions of K-nr^ and X,

(X with any fixed k-class estimator) in the variance of the disturbance

about zero. The meaning of his asymptotic series called the small-distur-

bance asymptotics was clarified by Anderson (1977) . That is to say, the

noncentrality parameter grows indefinitely large while the sample size

stays fixed in the small-disturbance asymptotics, and the sample size

increases together with the noncentrality parameter in the large sample

asymptotic theory.

There were some disputes on the interpretations implied by the null-

h3rpothesis of testing overidentifiability. Ambiguity on this matter was

clarified by Kadane and Anderson (1977)

.

We derive asymptotic expansions of the distributions of X and X,

for the two parameter sequences. The first term of approximate distribu-

2
tiotis of (T - K)X,_„ and (T - K)X__^- is the y distribution with L degree

LXnL xoLS

of freedom in the large sample asymptotics. The first term of approximate

distribution of ((T - ^)/^)^timl ^^'^ ^^"^ " ^5/^^\ ^^ ^^^ ^ distribution

with L and (T - K) degrees of freedom in the small-disturbance asymptotics.

We can see the difference of distributions of X_ _ _ and X, comparing the

higher order terms.

Model and test statistics are defined in Section 2. The resulting

approximate distributions of X, _._ and X, are stated in Section 3, In
LIML k
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Sectlon 4 empirical small sample distributions of X _^ , X „ j, and X„

are presented for particular models. We also discuss about deviations of

the approximate distributions from small sample distributions. The proof

is given in Appendix.

2, Model and Test Statistics

Let a single structual equation be

y. = Y 3 + Z-Y + u, (2.1)

where y. and Y^ are T x 1 and T x G. matrices, respectively, of observations

on the endogenous variables, Z, is a T x K. matrix of observations on the

K- exogenous variables, 3 and y are column vectors with G. and K- unknown

parameters, and u is a column vector of T disturbances. We assume that

(2.1) is the first eqxaatlon in a simultaneous system of G. + 1 linear

stochastic eqiiations relating G. + 1 endogenous variables and K(K = K. + K^)

exogenous variables. The reduced form of Y = (y. Y„) is defined as
mm «»i *»^

Y = zn + V

' (Zi Z2^^!i Iz^
*

^Zl ^2^ ^^-^^

where Z is a T x k matrix of exogeneous variables (full rank), tt' - (tt' it' )

and n' = (n' n' ) are, respectively, 1 x (K^ + K^) and G^ x (K^ + K2)

matrices of the reduced form coefficients, and (v^ V_) is a T x (1 + G^)

matrix of distxirbances. We make the following assumptions about the model:
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ASSUMPTION 1 , The rows of V are Independently normally distributed, each

row having mean and (nonsingular) covariance matrix

n =
l^u !:!i2\

\!:!2i ?22/

(2.3)

ASStlMPTION 2 . The matrix (it-, H-,) is of rank G- and II-- is also of rank

In order to relate (2,1) and (2.2) postmultiply (2.2) by (1, -P')',

then u = V. - V^B, Y = it.. - II. -g and

!2i = hib (2.4)

This is the null hypothesis of testing overidentifiability (Kadane and

Anderson, 1977) . The components of u are independently normally distri-

buted with mean and variance

a =
<^3_j_

- 2e'w2j_ + e'n22p' (2.5)

Let

C = Y'(I - Z(Z'Z)"-'"Z')Y (2.6)

and

G = Y'(Z(Z'Z)"-'-Z' - Z^(ZJ^ Z^)~-'-ZpY, (2.7)

then the test statistic for overidentifiability is
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(1 - 8')G(1 - 3')'

X= ^—

^

1 (2.8)

(1 - 6')C(1 - e')'

where 3 is the k-class estimator of 3, We denote X, t,„ as X with LIML
LUIL

estimator of 3» and X. with any fixed k-class estimator including X _

and X , We use the following notation in theorems:

L = K2 - G^, (2.9)

£* - -^ !2^'^e^f

;

y^ = l/tr{ (I +oux')"^n22^
(11^2^22.

l!!22^"''"?22^^ (2.11)

where

^22„1 = ^2^2 - l2ll^llh^''^l[h*
<2.12)

'^ii„2
= '"11 -

!:!i2?22!::2r
(2.13)

?=7=e22''^(e22l-^2l)- (2.14)

•^11.2

We additionally assume in the large sample asymptotics as:

_2
ASSIMPTION 3: 9 - ^^22^22. 1^22^*^ + 0(T ). (2.15)

This assumption is natural since A„- - is a moment matrix of exogenous

variables. We also define

v^ = u^/T. (2.16)
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The definition (2.16) exists by Assumption 3. In the small disturbance

asymptotics the definition of 9»„ should be conceived without the higher

order term in (2.15). Instead, f* is assumed to be constant to terms

-2
of order y . We refer to L as the degree of over-identification

2
and to y as the noncentrality parameter.

3. Distributions of Overidentifiability Test Statistics

The magnitude of the structural variance decreases in the small

disturbance asymptotics. It leads that the noncentrality parameter (2.11)

grows while the sample size is fixed in the small-disturbance analysis

2
since the orders of magnitude of Q and a are the same (Anderson 1977;

Kunitomo et . al . 1979). The following theorem follows when the disturbances

are small.

2
Theorem 1 ; When u increases while the sample size stays fixed ,

^ L k - ^^ L.T-K*-^^ r^ T-K + U - -
y

- (1 - k)[^^(l - k) + 2?][1 + ^^
V-^K + Lg"

^^

r'r^^^L.T-K^^^ ^^'^^

and

u

_2
to terms of order y , and F^ -j-.j^ and f

j^ ^_^ are F-distribution and density

functions with L and T-K degrees of freedom, respectively .

The first term of (3.1) and (3.2) are derived by Kadane (1970).

Approximate distributions of the test statistics associated with the TSLS

and OLS estimators are (3.1) with k = 1 and 0, respectively. It is



-7-

interesting to see that neither (3.1) nor (3.2) include terms of order y

It is rather striking to see that the nuisance parameter included in (3.2)

2 -2
is merely u . The term of order m of (3.2) is positive always. Then we

expect that a critical value imposed by a F distribution is greater than

2
that implied by an exact distribution if y is sufficiently large.

Turning to the large sample asymptotics, the next theorem follows.

2
Theorem 2 ; When y increases together with the sample size ,

^
2

Pr{(T - K)X^gj^g lU = G^(C) +^1 +^(L - 2 -O - f*'fH}g^U) (3.3)

y " -

and

2

I>r{(T - ^)\j^^ lU = Gj^(C) +^1 +y-(L - 2 - Olg^CO (3.4)

y

-1 2
to terms of order T , and G and g ar e the x distribution and density

functions with L degree of freedom .

The first term of (3.4) is given by Anderson and Rubin (1950).

Fdjitoshi (1977) derived (3.4) with different parametrization in MMOVA.

-1/2
We find again that the second order terms (T ) do not appear in expan-

sions.

4. Monte Carlo Studies

It is easy to give numerical evaluations of approximate distributions.

However, exact distributions seem hard to evaluate (see Richardson 1968;

and McDonald 1972). Then, instead of exact distributions, empirical dis-

tributions by Monte Carlo studies are obtained for the purpose of compar-

isons between small sample and approximate distributions. The empirical

small sample distributions calculated for our purpose are
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Pr{^
~ ^

X < §}. (4.1)K2 - 1 -

All the approximations are standardized to be comparable with (4,1).

About ten models are chosen from Anderson, Morimune and Sawa (1979)

for experiments, and we show results on four of them. See Anderson,

Morim\uie and Sawa (1979) for the references and disctissions on properties

of these models. The number of observations is 20,000 in Monte Carlo

experiments. The computer time was relatively short since we utilize

canonical representations of test statistics. It is easily seen that the

2
parameters to be specified in experiments are T, K, L, f* and y in virtue

of canonical forms.

In the following discussion on the results of experiments "F-approxi-

2
mations" mean the asymptotic expansions in Theorem 1, and "x -approximations"

mean the asymptotic expansions in Theorem 2,

2
As for Table 1, both the F- and x -approximations ((2), (3), (5), and

(6)) give much better approximations to the empirical small sample distri-

2
butions ((1) and (4)) than the simple F and x distributions ((8) and

2
(9)). The F-distribution (8) is a better approximation than the x -

distribution (9) to the distribution of X .^ , and it may be considered as

a good substitute for the distribution of ^j-r^q.; but not for that of -"^mcTe*

This is because the value of a (it is -f* when G^ = 1) is relatively large.

The distribution of X„-<, is extremely deviated from the other distributions,

and the F-approximate distribution does not give good approximation, either

(not shown in Table 1)

.

2
As for Table 2 the F and x -approximations ((2), (3), (5), and (6))

2
are improved from the simple F and x -distributions ((8) and (9)),
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respectively. This can be true for the LIML as well as TSLS estimators.

It seems, however, that the F-approximations are giving better approxi-

mations than the x"-approximations . Moreover, it may be adeqviate to say

that the F-distribution (8) is a good substitute for the distribution of

^LIML ^^^ ^"'^ °°*= ^°'' hsLS ^^^'

As for Table 3 the F-approximations ((2) and (5)) seem to be better

2
than the x -approximations ((3) and (6)) again. Especially, the F-

approximation of ^m-,,, (5) is quite close to the empirical small sample

distribution (4) , With respect to this Model the sample F-distributlon

(8) is a good substitute of the sxaall-sample distribution of X_„ „ (4)

,

The small sample distribution of \-ryr, (1) is also close to F, but it

deviates from F at higher values of 5, The distribution of X _ (7) gets

closer to the other distributions than in the previous two models,

2
As for Table 4 the x -distribution (8) is deviated from the small

sample distributions ((1), (4), and (5)). However, the other distributions

((2), (3), (6), and (7)) give close approximations to the small sample

distributions. As far as approximations of \.^,„ and A___ _ are concerned,
LIML TSLS

LIML and TSLS give numerically the same distributions since a is relatively

2
so small compared with y , A different phenomenon from previous models is

that the small sample distribution of X _ (5) is relatively close to those

2
of X and X . This is also because the value of p is large compared

wilth the value of (T - K)

.

5. Discussion

2
The critical values (e.g., at the 95% level) given by x distributions

after standardizations according to (4gl) are smaller than those given by



-10-

empirical distributions; the latters are again smaller than those given by

F distributions for K-ry^ as far as our limited nxncber of experiments are

concerned. The critical values given by F-approximations stay between

empirical and F distributions. Therefore testing overidentifiability

2
using X distribution is severer than it should be if we do not want to

reject a null-hypothesis. Testing overidentifiability using F distribution

is more lenient than it is supposed to be. It may also be fair to say

2
that F distributions give more accurate critical values than x distribu-

tions in our experinents , Nevertheless, it may be less accurate to use F

2
or X distributions for the distribution of ^^cto*

Takeuchi and Morimune (1979) proposed the extended limited information

maximum likelihood (ELI) estimator which is third order efficient. Similarly

they proposed the extended two-stage least-squares (ETS). estimator, and it

was found that the ETS estimator is less efficient than the ELI estimator.

It was also noted that the ELI estimator is asymptotically equivalent to

Puller's modified limited information estimator (1977), The large sample

asymptotic distributions of X (2,8) with the ELI or ETS estimator (denoted

^ ^ELI ^^^ ^ETS^ ^^^

Pr{(T - K)X^^j <_ O = Pr{(T - K)X^^ ^ ^> " \ fT^^?)* <5,1)

and

Pr{(T - K)X^^g < O = Pr{(T - K)Xj^jj^^ <_ ?} - \(L + h - C)^f*'f*g^(0 (5.2)

y

to terms of order T , respectively, and an h is any real value determining

the asymptotic bias of ELI,
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Morimune (1978) proposed an estimator which linearly combines the LIML

and TSLS estimators such as B_„,, = (L - l)e-_,^/L + e^„-/L. The distri-

bution of the variance ratio for this estimator is expanded as

Pr{(T - K)A^j^^^U = Pr{(T - ^)\j^ 1 ?> " -^2 ^*'^*&^(^), (5.3)

U L ~ ~

as the sample size increases to terms of order T , and

2

2 -2
as y increases to terms of order y .

Basmann (1960) proceeded a Monte Carlo experiments for a model whose

2
parameters are summarized as y = 10.52, f*'f* = 0.42, T - K = 10, and

L = 1.
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Model 2

X with 13 d.f., and empirical small sample distributions of ''^LIML> ^TSLS> ^'^-^ ^OLS
are given. The F distribution with 4 and 13 d.f., and the F-approx, and x^'approx of

"i-LIML are indistinguishable from the distribution of XlimL- F-approx and x^-apptox
o^ '^TSLS are not distinguishable from the distribution of AXSLS> either.
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Appendix A

We freely use the results, symbols, and random variables defined by

Fujikoshi et. al. (1978) and Kunitomo et, al. (1979) for deriving the

asymptotic expansions of distributions of variance ratios. The difference

in notation in this paper and those in Fujikoshi et . al. are

f* - vf (A-1)

F* = vF (A-2)

-1/2 1/2 -1/2
where F = ©22 '22 ^""^ "^ '*'*')

' ^^^ ^ ^^^ ^ ^^^ ^^^^ ^^ Fujikoshi et. al.

The new notations are used since it renders simplicity to analyses which

include two alternative sequences. The variance ration (2.8) is rewritten

for any estimator as

(1 - B')Q"^G*Q''^(1 - B')'

X 1
~ ~ ~ — ^^_^^

(1 - g')Q'VQ'"-^(l - e')'

Using the representation of Q , we obtain

i(l - 6')Q~^ =(10)-^ e'(f* F*) (A-4)

2
Substituting (A-4) into (A-3), the numerator divided by a is then

x'x - 2e'{x. + -isx} + e'd + f(S. + Si) + ^S'}e^ (A-5)

2
and the denominator devided by a is
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where S = (S^^ S^) , and S^ = f*xl + F*X' for i = 1,2. The equations (A-5)

and (A-6) are derived without using asymptotic assumptions, and they are

just depend on a canonical representation of the model. Let us next write

the expansion of the standardized estimator of 6 as

_ ^(0) , 1 ^(1) , 1 ^(2) , _. -3,

where each term on the RHS of (A-7) is obtained for the LUIL and TSLS

estimator in the large sample asymptotics (Fujikoshi et. al. ) and for the

2
LIML and fixed k-class estimators in the large u asymptotics (Kunltomo

et. al.). The expression of e^ is always x^ for these estimators in

both sequences. Substituting (A-7) into (A-5) the numerator becomes

-2
to terms of order y for all the estimators conceived in this paper for

the both sequences. However, the expansions of the numerator does not hold

the same expression as (A-8). For the large sample aymptotics (A-6) divided

by (T - K) becomes

1 +-(vw^^ - 2x|f*) +^iyL}^t*)^ + x|F*F*'x - 2x^(f*w^j^ + F*W2^)v

2

- 2e^^^^'f* + ^(wJ^ - 2)} (A-9)

-2
to terms of order y for the TSLS and LML estimators using (3.11) of

Fujikoshi et . al . However (A-6) is

c*^ - ^ x^(f*cfi + F*c*^) +^c*^(x|f*)^ + 2(x|f*)c*2F*'x^

V

+ x^F*C*2F*'x^ - 2e^-'-^'(f*c*^ + F*c*^)} (A-10)
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-2 2
to terms of \i when y increases while the sample size stays fixed for

the LUIL and any fixed k-class estimators. The difference between (A-6)

divided by T - K and (A-9) or between (A-6) and (A-10) are proved to be

_2
the order higher than p in each asymptotics. Multiplying Taylor's

expansion of the inverse of (A-9) to (A-8) we obtain the large sample

stochastic expansion of the variance ratio as

(T - K)X = x^X2 - ^\^x^x„Wj^^ + 2xJF*X^X2}

^ V^fs^^ ^ !i!^i^'^!b^^ ^ !i^i^ ^^2hr'^!6^^ "^ ^i^*'h^

+ (X^FA'x^ + vw^^X2)'(X2F*x^ + w^^x^)

^^ 2
+ x^X2 [2x^F*W2^ - x^F*F*'x^ "

3 ^^11 "2)]} (A-H)

-2 ^(1)
where the order of neglected terms is higher than y , and e^ can be one

of F*X^X2 - S|x^, $2X2 - S^Xj^, F*X^X2 - S^x^ - hf*. $2X2 - Sj!x^ - (L + h)f*,

or F*X'x„ - S'x. + — x'x,f* according to the LML, TSLS, ELI, ETS, or

2
combined estimator, respectively. Similarly, the large p expansion of the

variance ratio gives

sA = s^^ + ^|-{x;x„x'F*c* /c* - xiF*'x;x„}
c* ^^^11 -2-2^1^ _21 11 .1_ _2_2

+ "2^—{(e^^^ + S|x^)'(e^^^ + S|x^) + x^F*Xp2^*'x^ + 2(x^f*x^ - e^^^)F*X^x,

^ '^ll

'

+ s
2 2'"'ci: ci rs ' 1 :2i ^'n: r2i' '^ii

K2(x|f*x^ + e^^^)'F*c*^ + 4(x|F*c*^)^/c*^

- xp*C*2F*'x^ - 4x^(f*c*^ + F*c*^)x|F*X^X2} (A-12)
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_2
to terms of order y defining s = (T - K)/L. The teinns neglected from

-2 (1)
(A-12) are proved to be higher order than y , and e^ is one of

~p

Tffe - !fe -^ rfiv h^2 - ?i?i
" ^1 - ^^^r^^ii

-^ iTii^*
°^

1 L - 1 ^2f

2

F*x;x„ - S'x. + - x'x„f* r^-3:— F*c^, according to the LDIL, fixed
. .Z.Z >x»X L .Z^Z. li C?. i. «ZJ.

k-class, or combined estimator, respectively.

The rest of the computations are achieved by inverse Fourier type

2
transformations of x and F random variables. We proceed the computation

only for the LIML estimator in the two asymptotic theory. The same method

of analysis holds for the variance ratios with other estimators. We

denote the RES of (A-11) and (A-12), for simplicity, as

,(0)^1,(1)^1_,(2) (^_,3)

where X^ ' i = 0,1,2 correspond to the first, second, and third order terms

of (A-11) or (A-12). We further define

V = xjx2, (A-14)

and

w = c*^. (A-15)

In the large sample asymptotics E(X^ ' |v) = 0,

E(X^^^|v) = L + 2Cv^ - l)v, (A-16)

and

E(X^-'-^^lv) = 4v + 2vV (A-17)
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for X with the LIM. estimator. Then the expansion of the inverse trans-

formation

^1
2^ I

exp(-itx) E exp{it(T - K)Xj^^^}dtdx
^^ ^t

=
J ir [

^(-itx) E expCitv){l +%(X^2)|^j + ili|I^(^a)2(^j
+. R}dtdx (A-18)

gives (3.4) applying the formulae in Lemma B-1 to each term on CA-18)

.

In the large y asymptotics E(X^-^^|v,w) = 0,

w W V W (A-19)

and

2

E(X<^^2,^^^^ = 4
{V_^v_j^

^^_^^^
w w

Then the inverse transformation is

Q 27 J^
exp(-itx) E exp{itsXj^^}dtdx

^ exp(-itx) Eexp(itsv/w){l +i|.E(X^^^[v,w)
^"^ Jt p2

2

+ Y-^ea^^^^|v,w) + R}dtdx (A-21)
u

which gives (3.2) applying the formulae in Lemma B-2 to each term on (A-21).
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Appendlx B

We give some useful formulae on the inverse transformation of char-

acteristic functions related to the least variance ratios. The first

2
lemma is on the approximate distributions about x distributions. The

second lemma is on the approximate distributions about F distributions,

2
Lemma B.l: Let v be a x random variable with L degrees of freedom. Then

I
|-

I

(-it)Pexp(-itx)E[exp(itv)v^]dtdx
J -ran ^'^ J ^

= 2Jr(L/2+j)/r(L/2). s^lfa) (B-1)

where i = /T, j is any integer (L + 2j > 0), and Sj^^ (O is the (p - l)st

2order derivative of g- ,«.(C) which is the x density fiaiction with L+2j

degrees of freedom. In precise (B-1) with p = 1 is

^\(0 (B-2)

'
'

ft

and (B-1) with p = 2 is
^

'" '
y

|[(L + 2j - 2)?^"^ - ?^]g^(0. (B-3)

The equation (B-1) is obtained by inverse transformation of Laguerre poly-

nomial multipliers,
i<

2
Lemma B.2: Let v and w be independently distributed x random variables

with L and q degrees of freedom. Then
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^
I

(-it)Pexp(-itx)E[exp(itsv/w)v^'w^]dtdx
x=0 ^^

•'t

where s = q/L, a^^^ = LCq + 2k)/[qa + 2j)],

c = 2J'^^r(L/2 + j)r(q/2 + k)/[ra/2)r(q/2) ], and fL+2j!q+2kK,j^^ ^^ ^^^

(p-l)st derivative of the F density function with L + 2j and q + 2k degrees

of freedom with respect to C. In particular (B-4) with p = 1 Is

j+k r(a + .1 +k) __(i/s)l_ , . . .

rtal i+k L c^^'''
^^^^

^^^^
(1 + C/s)^ '^

and (B-4) with p = 2 is

.j+k-1 r(a + j + k) (g/s)^ pL + 2j - 2 L(L + q + 2j + 2k ) ,.^ /t> .x

^^^)
(l + C/s)J^^^ ' '^^^^ ^^L,q<^>

^^-^>

defining a = (L + q)/2.

Proof : sv/w is Fisher's F ratio with L and q degrees of freedom. Let its

density function be f (x) . By the uniqueness of the inverse transfor-
L,q

nation.

r? 1 r? r r

x=0
exp(-itx) expCits —)g_ (v)g (w)dvdtdx

Jr.^n J,r=n w L qt •'w=0 •'v=0

f, (x)dx = F_ a) (B-7)
Jq L,q L,q

where the last equality is an identity defining the c.d.f. of sv/w.
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By the property of x density function,

v^w\(v)gq(w) - cg^+2j^^^V2k^^^-

Then

* E[exp(lts -)v^w^]

L, Lo ^^^'' JK+2j^-)V2k^-)^^'^-

* T.r J^O
^^^^^'"'

w^%.+2j^^^V2k(^)^^'^^
w=»0 'v=0

(B-8)

where t» = -^--, and s' =
} H) .

Then (B-8) with (B-7) leads to

^ 1
exp(-ltx)E[exp(lts -)v^w^]dtdx

x=0 ^"^
•'t

"^

= CiVjJ^^J,, ^<-"'<^.j==»J w
exp (it

'
s

'
-)

gj^^2j (^) Sq+2k ^^^ ^^^^^^dt ' dx

* ''^L+2j.q+2k^\,j^^

•/t

(B-9)

The pth orderlvatlve of the first and third equations of (B-9) gives (B-5)

,

When p = 1,

,j+k ^J

L+2j,q+2k^\,j^'' ca^^^ rCa) ^^ ^ S/s)^"^^
^''J

CB-10)
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which gives (B-5) , Similarly when p = 2

fCl) fa
s 1 L + 2j - 2 L(L + q + 2k+ 2.i)^ ..

L+2j,q+2k^^k,J^'' 2a^
-I

? q + U -" L+2j,q+2k'"^''

which gives (B-6) using (B-10)

.
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Appendlx C

This Appendix is about the validity of the asymptotic expansions

formally derived in tiie Appendix A. The proof is essentially the same as

that used by T. W. Anderson C1974) which involves expansions of the dis-

tribution function. We simply sketch the proof below confining ourselves

to the asymptotic expansion of \j,rr in the large sample sequence. The

same results as the Theorems 1 and 2 were also obtained by the method

explained below. However these computations include cumbersome statistical

operations and are omitted from this article.

In the large sample asymptotics, we use the space J_ where each ele-

ment of x^, x_, X^, and X- is in the interval C-2/log T, 2/log T), and

each element of W (in particular W in this article) is in the interval

0'21og T, 2 log T), Then Pr(J_} = 1 - o(T \ which is proved by Anderson

(1974), In J„, the numerator of ^j-p^ ^^'^ its demoninator divided by

CT - K) are expanded as (A-8) and (A-9) to terms of T . The remainder

—3/2
terms are of order T in J„. The long division of the inverse of (A-9)

in J_ for sufficiently large T and multiplying it to (A-8) leads to (A-11)

.

-3/2
The remainder term of (A-11) is also of order T in J„. Then the LHS

of the inequality (T - K.)X 4 S is replaced by the RHS of (A-11) with

_3/2
the remainder term of order T . Define P^^ = I - X^(V^^^)yi^^ and

% ' ^ \' ""^ °°'^ ~2\?2» ^l^yip' ^^ ?2?2^?2?2>"^^^ ^^« ^"'^^"

pendently distributed. The inequality which we want to compute probability

is rewritten in the form as

xlP„ x_{l + - A + —- B} ^ (5 - xiPx X-)
.2 X2.2 w ^ 2 - .2 ^^,2

+ ic+-^D + R (C-1)
VI 2

y
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by decomposing x'x_ into the sum of x'P x„ and x'P x„. The random

variables in A, B, C, and D are independent of x'P x_. V7e devide both

2
sides of (C-1) by 1 + A/y + B/y which is positive as T increases. By

2 -1
the long devision of (1 + A/y + B/y ) , (C-1) is finally written in the

form as

>?X ^2 = ^^ ~
^2^X ^"2^ + C'/y + D'/y^ + R' CC-2)

-3/2 —
where the remainder term is of order T . Since x'Py x_ is distributed

2
as X with (L - G^) degrees of freedom (on the whole space),

= E[G^_g (CS -x^Px X2) + c'/v + D'/y^ + R'}] (C-3)

2
where G is the x distribution function with m degrees of freedom. By

Taylor's expansion of (C-3) in J„, it is now

+ E[g^_^ (5 - xpx X2)(C'/y)^] + R" CC-4)

2
where g^( ) is the x density function with m degrees of freedom and g*

-3/2
is its derivative. The new remainder term R" is of order T . The

expectation of (C-3) and (C-4) are over the whole space, and the differ-

_2
ence between the integral over J and over the whole space is 0(1 ) be-

cause G ( ) is bounded. The final result follows after some tedious
m

computations of the first three terms in CC-4)

.
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